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Extension of the MoM Laplacian Solution
to the General Helmholtz Equation
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Abstract— A new boundary integral method for solving the
general Helmholtz equation has been developed. The new formu-
lation is based on the method of moments Laplacian solution. The
main feature of this new formulation is that the boundary condi-
tions are satisfied independent of the region node discretizations.
The numerical solution of the present method are compared with
finite difference and finite element solutions.

1. INTRODUCTION

HE TWO-DIMENSIONAL Helmholtz’s equation ap-

pears in a variety of physical phenomena and engineering
applications, such as, acoustic radiation [1], heat conduction
[2], and water wave propagations [3]. In semiconductor
device modeling, Helmholtz’s equation arises frequently as
an intermediate step in the solution of the nonlinear Poisson’s
problem. To solve these problems diverse numerical methods
have been reported which include, finite difference [4], finite
element [5], and boundary integral method (BIM) [6], [7], and
[8]). Using these conventional methods, it has been found that
fine grids and a large number of elements must be employed
to get satisfactory accuracy [3]. This requires large computer
core storage, and more computational time especially for the
iteration scheme of the nonlinear Poisson’s problem where
the value at each grid point needs to be updated at each
step of the iteration. Further, the BIM formulations are in
most cases limited to homogeneous Helmholtz’s equation
and tied closely to the particular problem at hand [6]. In
this paper, a simple approach to solve the homogeneous
and nonhomogeneous Helmholtz’s equation is proposed. The
technique is based on the computation of Laplacian potential
by the method of moments (MoM) [9], without resorting
to different formulations using Hankel functions as it is
commonly done in BIM [10]. Besides its generality to solve
Laplace’s, Poisson’s, and Helmholtz’s equations in one single
code implementation, the present method will considerably
reduce the number of domain grids compared to the finite
difference methods and does not require any interpolation.
The accuracy of the MoM solution will be compared to the
solutions of finite difference method (FDM) and finite element
method (FEM), using ELLPACK implementation [4].

II. MATHEMATICAL FORMULATION OF MOM

Consider the following expression as the governing elliptic
equation for a smooth function ¥ defined in a 2-D region R,
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with contour C
V3U(z, y) + Mz, y)¥(z, y) = F(z, ) (1)

where A and F' are known functions on the domain R. The
general form of (1) includes, as specializations, the following
cases:

1) Laplace’s equation, with A = 0 and F = 0.

2) Poisson’s equation, with A = 0 and F # 0.

3) Helmholtz’s equation, with A # 0 and F # 0.
So only one general formulation addresses the solution to all
of the three cases above. On the contour C the boundary
condition can be of Dirichlet, Neuman, or mixed type, as
given by the general form

ov
oW + B = @

where o, 3, and ~, are known spatial functions. Further,
0T /On represents the normal derivative. It is implied that
consistent boundary conditions are chosen.

The proposed scheme to solve the given boundary value
problems starts by assuming the term AV as a known function,
and including it with the given function F), reducing (1) to the
familiar Poisson’s equation

ViU(z, y) = ~G(z, y) 3

with
G(z, y) = Mz, 9)¥(z, y) - Flz, y). O]
The solution to Poisson’s equation in (3) can be expressed as
U =y + ¢y )]

where ¢y, is the solution to the homogeneous Poisson’s equa-
tion (Laplace’s equation)

V=0 6)
and ¢, is the particular integral, i.e.,
V24, = —G(z, y). @)

Here we use the particular solution of the Poisson’s equation
given by [12]

bote, 1) = 5= [ @)
k

.ln<\/(w—w’)2+(y--y’

)2) dz’ dy’  (8)

0018—9480/95t$04.00 © 1995 IEEE



2580

where (z, y) and (z/, ') denote the spatial coordinates of
the field and source points, respectively, and k is an arbitrary
constant. k is taken as 100 in the present work, since for 2-D
problem the reference potential at infinity is not zero but finite.
A value of k£ = 100, provides the potential value at infinity.
To evaluate the above integral we divide the domain R into
N sub-regions. The midpoint coordinates of each of the sub-
regions AR, are denoted by (z2;, y2.). Then the potential ¢,
at the field point (z, y) is approximated by

N

= ZG(wzi, Yy2i)ai(z, ¥)

=1

¢P($7 y) (9)

“5 /)

-1 de' dy’. (10
“<\/(x~m'>2+(y—y'>2> ©dy. 10

Hence it is assumed that G(z, y) is constant within each
subregion AR; and is equal to the value G(za,, y2.)-

An expression similar to (9) can be derived to approximate
the Laplacian potential ¢,. The potential ¢, can be assumed to
be produced by some equivalent charge sources, o, located on
the contour C [12]. Then the potential ¢ at any point (z, y)
can be obtained from o(z, y) using the following integral [9]

1 o k 4
e )= g o 0 (wx—x')z ¥ (y—y/)Z)dl
: 1)
where !’ is the arc length on the contour C.
The boundary condition of the homogeneous potential ¢y,

is obtained from (2) and (5) as

g+ B = ( ady + B ¢”)

where

ai(z, y)

(12)

It can be seen that (6) along with the boundary condition of
(12), constitute the same boundary-value problem as the one
considered in [9]. Hence an approximate solution to (11) can
be obtained by the MoM. Pulse-expansion and point-matching
techniques will be adopted to solve the present problem. If the
contour C is segmented by M straight lines of length AC,
between points ¢ and ¢ + 1, then ¢ can be represented by the
step approximation

13)

M
o= ZaiPl(l)
=1

where P;(l) is a pulse function equal to 1 on AC; and zero
elsewhere and o; is its unknown amplitude. Substituting (13)
into (11), we obtain an approximation for ¢y,

M
$n(z,y) 2 Y oici(z, y) (14)
=1

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 11, NOVEMBER 1995

where

Cz(x7 y) = / (\/7_ ZL'/ y Y )2> di'. 15)

Using (4), (9) and (14), the Helmholtz potential ¥ at an
arbitrary point field (z, y) can now be expressed as

k

M N
U(z, y) = S oeile, v) + 3 (AT — Fai(z, v)  (16)
i=1 =1
where for simplicity we used the abbreviations A; =
Mz2i, y2i), Fs = F(Z2i, y2:), and U; = U(za;, yos) in (4).
U(z, y) in (16) can be evaluated once the unknown terms,
o; and U;, are determined. Next a system of two matrix
equations is derived and solved for o; and ¥;. The first matrix
equation of this system is readily obtained by satisfying (16)
at the midpoints (z2;, y2;) of each of the N subregion A%R;.
Using matrix notation, we obtain

(951 = [pss] - [od] + [gza] - T — Fo]

where py; = ¢i(225, ¥2), and gjo = ai(w2;, y2))-

The second matrix equation is obtained by enforcing the
boundary condition of (12) as follows. We define #; =
(®,9;),5 = 1,2,...,M, as the midpoints of AC;. The
boundary conditions are enforced at each #,. Substitution of
(9) and (14) into (12) gives the following set of equations

a7

M N
Yol =7-> AWT—Fb;  j=1,2,...,M (18)
=1 =1
where «; = ¥(7,) and
dc;
L, = (acl +,Bac ) (19)
T/ (=, y)=+,
Oa,
b = (aaz + Ao (20)
O / (2, 4)=7,

(18) is conveniently expressed in matrix notations as
[Lyilloe) = [v;] = [bya] [N s — Fil.

Observe that (17) and (21) form a system of two equations in
two unknowns which can be solved for o; and ¥;. We use (21)
to obtain an expression for ¢ and then substitute it into (17),
and after simple matrix manipulations the following equation
for ¥, is obtained

ey

[A] - [¥;] = [B] (22)

where
[A] = [I] + ([pslll5] ~ [Bs] — [gze]) (el (23)
[B] = [pyalltyal ~*[vs] + (pgallls] " Hbsil — [ [E:] - (24)

and [I] denotes the N x N identity matrix.
From the last three equations some general comments can
be made:
1) Analytic expressions can be easily derived for the eval-
uation of all the terms in matrices [A] and [B] that
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include the integrals (10) and (15). In the next section
the evaluation of the relevant matrix elements will be
presented.

2) The matrix [I;;] has the moment matrix elements similar
to the matrix elements obtained in [9]. For different
Helmholtz problems with the same boundary conditions,
[{;s] remains unchanged. This observation is important
in an iteration scheme where the boundary conditions
are kept the same.

3) Problems with multiple right-hand sides are solvable
with minimum additional computational time since the
function F in (17) appears only as a term of matrix [B]
in (24).

4) The domain and the contour discretization schemes are
totally independent. This feature can offer the flexibility
to handle boundary discontinuities without the need
of excessive domain grid generations. This will be
illustrated through numerical examples in Section IV.

5) Once V; is determined at the grid points, using Gaussian
elimination for instance, the potential at any other point,
is obtained using ordinary matrix multiplications as
shown by (17). No interpolations are needed.

1. EVALUATION OF THE MATRIX ELEMENTS

To compute the function ¥ from (17), one has to evaluate
the integrals of the matrix elements in (19) and (20). The
evaluation of the one-dimensional integral in (19) for the [;;
matrix elements has been discussed in [9]. Complex-function
theory was found useful to evaluate the integrals of (19) the
kernel of which is either a Green’s function or its gradient.
The Green’s function has integrable logarithmic singularities.
The integral of the gradient, dc;/On, is discontinuous at AC;,
equal to 7 internal to C, and equal to —7 external to C.

In this section the b,; matrix elements will be evaluated.
From (20) bj; is determined once the integrals of a; and
8a;/8n are both computed. The da;/On integral has no
logarithmic kernel and can be easily evaluated. The two-
dimensional integral of a; can be evaluated by using the results
of [9], as illustrated below. For simplicity we consider the
rectangular subregion AR; with coordinate system shown in
Fig. 1. We will use the notation 2(z, y) = « + jy to represent
a point in space. Referring to Fig. 1, the integral of (10) can
be written as

1 Yout1 Lot k.
G, = -—/ dy'/ In (———,) dz' 25)
21 Jy, o lr — 7]

Ir—r'| =/ (z—2/)2+(y —y')?

7 and r' denote the radius vectors to the field and the source
points, respectively. Using the identities

(2e) =7 (= (25)

dl = |d?'| = d2'Ju

where

(26)

@n

and

(28)
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Fig. 1. Coordinate system for the evaluation of the matrix element integrals.

where v is the unit tangent to C. The integral in (25) can now

be written as
1 Yoi1 ,
a; = — / Ih dy
Zﬂ- Yo
where

1 @1 10) L
I, = Re ——/ In (————,) d7 (30)
ULi J 2@, yn) &

I, has the same form as the matrix element integral evaluated
in [9], and it is equal to

Ii; = Re (Al (1 +In (—L—)>
Z = Zi41
TR ] (ln <f———* z"“))) (1)
U4 Z = %

where 2, = 2(%y, ¥i), Zig1 = 2(Tit1, ¥i), Dt = |Ziq1 — 7,
and

(29)

e
|Tsq1 — i

(32)

By substituting (31) into (29) and integrating, we obtain the
following expression for a;

1 . 1
0 =5 (Az(yﬂ_l — i + I;) + —(I3; — 141)) (33)
iy U4

Yot1 k
Iy; = / Re (ln ( ——)) dy’
. Z = Zit1

which can be written as

1 @1 Yetr) k
I; =Re ———/ In (——— ; ) dz (35
U2i z(“’z-{-ly'yz) z= z'i"'l

where

where

(34

g = 2(Tiv1, Yirr) — 2(Tig1, Yi)

C T 2(@igns 1) — 2(@iss B0
Note that the integrals of (30) and (34) are similar except
for the limits of integration. Hence (31) can also be used to

compute I,.
The integral I5;, which is defined as

Yit1 k
I = / Re ((z —z)In (——-——)) dy’ 37)
. Z &+l

(36)
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Subragions for which eqn

\ c+ (10) has singularities.
c
\ AN
AR, | | ARy !
TR ST

AR,

Fig. 2. Geometry modeling of the contour ct.

can be expressed in terms of Iy; using complex-function theory
as follows

Y1 k ,
1322/ (.’L’—IL'Z')III m dy

' Yot1 _ o

% T — Titl

) dy’. (38)

Using (34), the above integral becomes

Iy, = (z — z3) 1o + I, (39)
where
Y—Y+1 ) u
Tg; = / u atan (—-———) du, u=y—-y9.
Y=, T~ Tit1
(40)

Ig; can be evaluated analytically using integral tables. Finally,
the integral Iy, in (33) is defined as

I "R n(F dof
SN

Comparing (41) and (37), one can conclude that the integral
14, can be obtained from the integral I3; by simply replacing
Z+1 by z; in (37). Now all quantities of (25) are evaluated
and can easily be programmed. However, as a word of caution,
logarithmic singularities can appear when evaluating (25) for
a subregion AfR; if one of its edges coincide with a AC;
segment of the contour C, as shown in Fig. 2. Probably
the easiest technique to circumvent this type of singularity
predicaments is to first move the AC; segment locations to a
fictious parallel surface C just outside the bounding surface
C [12].

41

IV. NUMERICAL APPLICATIONS

Example 1) Water Propagation: General numerical tests
have been performed to show the validity of the present
method. As a first example, we consider the problem of water
propagation in a rectangular basin 100mx 100m [3]. Denoting
by U the water evaluation, then the wave propagation is
governed by (1) with FF = 0, and A = k? where % is the
wave number. The boundary conditions used are displayed
in Fig. 3. The solution by MoM is compared to the solutions
obtained by FDM and FEM for various mesh sizes inside the
domain. The minimum number of nodes required for each
method to converge to the exact solution at any arbitrary point
is optimized. Fig. 4 compares the solutions computed along
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D= ft (X)

3D/dx = -f{y)

3D/ox = 1,(y)
y
X
O = fb(X)
coslox) if 20<x<80
where filx)= |-2 if x<20
1 if x>80
f:(x = sin{oy), fy = cos(ox), and o.=2n
Fig. 3. Structure and boundary conditions of example 1.
1
-§ — Exact solution
§ 0% MoM solutions: R
® + 1x1 (grids) g
3 ol X 2x2 %
5 o 4x4 R,
g E

+,
+.
2 4, oF
4, +t
b pgiprttt

0 01 02 03 04 05 06 0.7 08 0.9

distance (x10m)

Fig. 4. MoM solutions for example 1.

the line £ = 90 by the method of moments utilizing (1x1),
(2x2) and (4x4) grids. Fig. 5 shows the solutions obtained
by the finite element method utilizing (5x5), (10x10), and
(20%20) grids. Fig. 6 shows the results obtained by the finite
difference method utilizing (5x5), (15x15), and (35x35)
grids. In all these figures, the solid line represents the exact
solution. Referring to these figures, one can easily observe
that a considerably smaller number of nodes are employed
with the present method than with the conventional methods.
The minimum number of the domain nodes required to obtain
a satisfactory accuracy using MoM is 16 (4x4), compared to
400 (20x20) for FEM or up to 1000 nodes for FDM.

Example 2—MOST Modeling: The nonlinear Poisson’s
equation plays a key role in numerical modeling of semi-
conductor devices. Many important characteristics of VLSI
devices can be extracted from the solution of Poisson’s
equation. The most common approach to the numerical
solution of the nonlinear Poisson’s equation is based on the
application of Newton’s method to simultaneous discretized
equations [15]. This approach often requires large storage,
especially for fine meshes as it is the case for two-dimensional
modeling of the MOST [14].
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— Exact solution
1l FEM solutions +
+ 5x5 (grids)
x 10x10 %
o 20x20 e

water evaluation
o
i

02 03 04 05 06 07 08 05 1
distance (x10m)

LK

Fig. 5. FEM solutions for example 1.

— Exact solution
0.9 FDM solutions:
+ 5x5 (grids)

x 15x15

o 35x35

water evaluation
(=]

Q0000 "

5 X200

- XXX OO0t
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1 ,

2

XXXXXXXXXX
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+++
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gyttt
071 02 03 04 05 06 07 08 09 1
distance (x10m)

Fig. 6. FDM solutions for example 1.

D=VgVy
®=Vs-Vy, l | tox Zox | = V-V,
sl
3/ox = 0 N, o®/ax =0
v
X
®=0

Fig. 7. Structure and boundary conditions of example 2.

In this section the MoM is applied to solve the nonlinear
Poisson’s equation that arises in the MOST modeling. We con-
sider the MOST structure of Fig. 7 made on a p-type substrate
with doping N4. Under the low current approximation the
potential & is governed by the Poisson’s equation [16]

82‘11 ’ni ( — U NA)
d—=— e —e — 42)
(9y2 LZD 3

%y
dz?

where ¥ = ®/Vp is the normalized potential. Vp is the
thermal potential, n; is the intrinsic carrier concentration, and
Lp is the Debye length.

The boundary conditions adopted along the edges of the
device are the same as those used by [16], [12], and are
displayed in Fig. 7. On the oxide-semiconductor interface the
following boundary condition is assumed :

Vo—®— Vrp %

ox T T €sT— 43
‘ tos By @
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where €,,, and €, are, respectively, the oxide and silicon
permittivities. Vg is the flat band voltage, and %, is the
oxide thickness.

To solve the above elliptic problem we proceed first by
dividing the boundary into M segments. Finer segments are
used on the top edge of the device to handle its boundary dis-
continuities. Using the boundary conditions, and the technique
described in [9], matrix [,,] is computed, then inverted and
stored. Independently, the base domain is also divided into
N finite elements or cells. We seek to determine the electric
potential at each midpoint of the cells using (42) which is
nonlinear. To solve it we set up an iterative procedure, based
on Newton’s linearization [15]. At the K** iteration we replace
the right-hand side of (42) by its Fourier expansion about ¥*.
Then the following Helmholtz’s equation is obtained

52 (k+1) 92y k+1)
Ox? + Oy?
where F' and G are given by

FI®W) = %12_ ((\I/(k) +1)e V" 4 (@® —1)e¥" - &‘-)

— GUEYEE) = PR (44)

D Lo
(45)
GU®) = %(e"y(k) +ev™, (46)
D

The iteration scheme starts by taking some initial guess value
for T(® so that (44) can be solved for the first approximation
U@ Then U is used to find the second approximation (%),
The procedure is repeated until the norm ||¥*+1) — TR)|| js
less than a desired tolerance. However, this iteration scheme
often diverges [13], [15], and some damping factor was found
necessary to improve the convergence of the iterative solution.
At the beginning of the K*' iteration step, the following
formula was used for all inner nodes

g+ = (1 - R)\I/(k_l) + RU® 47

where R(< 1) is the relaxation factor.

The accuracy of the solution obtained by the present tech-
nique is demonstrated by comparison to the FDM (5-point)
solution. For both methods, MoM and FDM, we let the values
of the electric potential to be updated at each mesh point
by means of explicit formula, that is, without the solution
of simultaneous algebraic equations [15]. We assign ¥ = 0,
as an initial guess, for all inner nodes. Once the convergence
is attained for the domain nodes, then the electric potential
at any other point in the device is defermined by matrix
multiplication as shown in (17), and without the need of any
interpolation. For numerical computations, the relevant data
used are as follows: the oxide thickness, £,, = 0.5 pm. The
flat band voltage, Vip = —1 V, the doping profile is assumed
uniform, N4 = 10'® cm™3, n, = 1.5 x 10'° cm™3, thermal
potential, V7 = 0.0258 V, and R = 0.1. The results of
the computations are shown in Fig. 8, where the distribution
of the electric potential at the thermal equilibrium is plotted
along different lines parallel to the = axis. The solid lines
represent the solution obtained using the FDM and (o) symbol
is reserved for the solutions obtained by the present method.
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Voltage (V)

07 08 09
distance (um)

Fig. 8. The distribution of electric potentials along the lines parallel to the
T-axis.

Close agreements can be observed between the two methods.
However, for FDM 721 nonuniform mesh points are employed
to reduce the total number of nodes (for uniform meshes over
4900 (70x70) nodes ought to be used). Finer meshes were
chosen in the depletion region and near the junctions to resolve
the fast variation of the electric potential [16] and the surface
discontinuities. Whereas for MoM the number of the uniform
meshes was 529 (23x23) or 400 for nonuniform cells. The
number of iterations required for the convergence was 51 with
the present technique compared to 108 iterations with FDM to
reach the point at which the absolute maximum between two
subsequent iterations was less than 0.05 (tolerance).

V. CONCLUSION

An efficient technique based on MoM formulation for solv-
ing a general Helmholtz equation has been presented. The main
feature of this new formulation is the boundary conditions
are satisfied independent of the region node discretizations.
This feature was found specially useful when the boundary
conditions have discontinuities. Considerable reduction in the
domain grids are realized with the present method compared
to the conventional methods such as finite difference method
or the finite element methods.
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