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Abstract— A new boundary integral method for solving the
general Helmholtz equation has been developed. The new formu-
lation is based on the method of moments Laplacian solution. The
main feature of this new forrmdation is that the boundary condi-
tions are satisfied independent of the region node discretizations.
The numerical solution of the present method are compared with
finite difference and finite element solutions.

I. INTRODUCTION

THETWO-DIMENSIONAL Helmboltz’s equation ap-
pears in a variety of physical phenomena and engineering

applications, such as, acoustic radiation [1], heat conduction

[2], and water wave propagations [3]. In semiconductor

device modeling, Helmholtz’s equation arises frequently as

an intermediate step in the solution of the nonlinear Poisson’s
problem. To solve these problems diverse numerics! methods
have been reported which include, finite difference [4], finite
element [5], and boundary integral method (BIM) [6], [7], and
[8]. Using these conventional methods, it has been found that
fine grids and a large number of elements must be employed
to get satisfactory accuracy [3]. This requires large computer
core storage, and more computational time especially for the
iteration scheme of the nonlinear Poisson’s problem where

the value at each grid point needs to be updated at each

step of the iteration. Further, the BIIvI formulations are in
most cases limited to homogeneous Heh-nholtz’s equation
and tied closely to the particular problem at hand [6]. In
this paper, a simple approach to solve the homogeneous
and nonhomogeneous Heltnholtz’s equation is proposed. The
technique is based on the computation of Laplacian potential

by the method of moments (MoM) [9], without resorting
to different formulations using Hankel functions as it is
commonly done in BIM [10]. Besides its generality to solve

Laplace’s, Poisson’s, and Helmholtz’s equations in one single
code implementation, the present method will considerably
reduce the number of domain grids compared to the finite
difference methods and does not require any interpolation.
The accuracy of the MoM solution will be compared to the
solutions of finite difference method (FDM) and finite element
method (FEM), using ELLPACK implementation [4].

II. MATHEMATICAL FORMULATION OF MoM

Consider the following expression as the governing elliptic

equation for a smooth function V defined in a 2-D region !%,

Manuscript received January 6, 1995; revised August 1, 1995. This work
was supported in part by the CASE Center of Syracuse University.

The authors are with the Electrical and Computer Engineering Department,
Syracuse University, Syracuse, New York 13244-1240 USA.

IEEE Log Number 9414840.

with contour C

V2W(Z, y)+ A(X, y)w(z, y) = F($, y) (1)

where A and F are known functions on the domain X The
general form of (1) includes, as specializations, the following
cases:

1) Laplace’s equation, with A = O and F = O.
2) Poisson’s equation, with A = O and F # O.

3) Helmholtz’s equation, with A # O and F # O.

So only one general formulation addresses the solution to all
of the three cases above. On the contour c the boundary

condition can be of Dirichlet, Neuman, or mixed type, as
given by the general form

aw+/3g.7 (2)

where Q, /3, and ~, are known spatial functions. Further,
dV/dn represents the normal derivative. It is implied that
consistent botindary conditions are chosen.

The proposed scheme to solve the given boundary value
problems starts by assuming the term AU as a known function,

and including it with the given function F, reducing (1) to the
familiar Poisson’s equation

V2V(Z, y) = –G(z, y) (3)

with

G(z, y) = ~(z, y)~(~, y) – .F(z, y). (4)

The solution to Poisson’s equation in (3) can be expressed as

w=#h+q5p (5)

where ~h is the solution to the homogeneous Poisson’s equa-
tion (Laplace’s equation)

V2#h = O (6)

and @p is the particular integral, i.e.,

V2q$ = –G(x, y). (7)

Here we use the particular solution of the Poisson’s equation

given by [12]

. in
(/

k

)
(z_ qz + (y .: /)2 ‘x’ ‘y’ (8)

0018–9480/95$04.00 @ 1995 IEEE



2580 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. 43,NO. 11,NOVEMBER1995

where (z, y) and (d, y’) denote the spatial coordinates of
the field and source points, respectively, and k is an arbitrary

constant. k is taken as 100 in the present work, since for 2-D
problem the reference potential at infinity is not zero but finite.

A value of k = 100, provides the potential value at infinity.
To evaluate the above integral we divide the domain 9? into

N sub-regions. The midpoint coordinates of each of the sub-
regions AM, are denoted by (z2~, Y2,). Then the potential 4P

at the field point (x, y) is approximated by

. in

(d

k

(z - x’)’+ (y - y’)’ )

dz’ dy’. (10)

Hence it is assumed that G($, g) is constant within each
subregion AiR~ and is equal to the value G(%z,, yz ).

An expression similar to (9) can be derived to approximate
the Laplacian potential ~h. The potential +h can be assumed to
be produced by some equivalent charge sources, o, located on
the contour C’ [12]. Then the potential ~~ at any point (z, y)

can be obtained from a(z, y) using the following integral [9]

h(~>Y)= ;/cC7(x’,y’) hl
L

k

)(Z-2?)’ + (y-y’)’ ‘z’.- ,
(11)

where 1’ is the arc length on the contour C.
The boundary condition of the homogeneous potential ~~

is obtained from (2) and (5) as

( W’p@h +/6 )~=v @’P+P~ .
(12)

It can be seen that (6) along with the boundary condition of
(12), constitute the same boundary-value problem as the one
considered in [9]. Hence an approximate solution to (11) can
be obtained by the MoM. Pulse-expansion and point-matching
techniques will be adopted to solve the present problem. If the
contour (2 is segmented by M straight lines of length AL’,
between points i and i + 1, then ~ can be represented by the

step approximation

0= &P,(l) (13)
8=1

where Pi(1) is a pulse function equal to 1 on ACi and zero
elsewhere and ai is its unknown amplitude. Substituting (13)
into (11), we obtain an approximation for ~k

M

i=l

where

1 (J

k
c,(x, y) = In

)

all’.
AC. (z - z’)’+ (y - y’)’

Using (4), (9) and (14), the Helmholtz potential U
arbitrary point field (x, y) can now be expressed as

ivf N

(15)

at an

(16)

where for simplicity we used the abbreviations Ai =
)(zz~, yz~), Fi = F(zx, yz), and Vi = V(SZ, Yzi) in (4).

V(z, y) in (16) can be evaluated once the unknown terms,
Oi and Ui, are determined. Next a system of two matrix

equations is derived and solved for a~ and Vi. The first matrix

equation of this system is readily obtained by satisfying (16)
at the midpoints (xzj, Yzi) of each of the N subregion A%.
Using matrix notation, we obtain

[Wj] = ~ji] . [1%]+ [qji] - [Atwl - F,] (17)

where Pji = Ci(zzj, Yzj), and qj, = a; (~2j, Y2j).
The second matrix equation is obtained by enforcing the

boundary condition of (12) as follows. We define ?j =

($j)Yj)>j = 1, 2,..., ill, as the midpoints of ACj. The

boundary conditions are enforced at each ?1. Substitution of

(9) and (14) into (12) gives the following set of equations

M N

(19)

(20)

(18) is conveniently expressed in matrix notations as

Observe that (17) and (21) form a system of two equations in
two unknowns which can be solved for o~ and Ui. We use (21)
to obtain an expression for cr and then substitute it into (17),
and after simple matrix manipulations the following equation
for Vi is obtained

[A] . [W;]= [1?] (22)

where

[A] = [~]+ (bji][zji]-l [’j.] - [qji])[A] (23)

[~1= kjil[zjil-l[~jl + (kjil[zjt]-l[’ji] - [qjil)[~i] W)

and [1] denotes the N x N identity matrix.
From the last three equations some general comments can

be made

1) Analytic expressions can be easily derived for the eval-
uation of all the terms in matrices [A] and [13] that
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2)

3)

4)

5)

include the integrals (10) and (15). In the next section

the evaluation of the relevant matrix elements will be

presented.
The matrix [lji] has the moment matrix elements similar

to the matrix elements obtained in [9]. For different
Helmholtz problems with the same boundary conditions,
[lJi] remains unchanged. This observation is important
in an iteration scheme where the boundary conditions

are kept the same.
Problems with multiple right-hand sides are solvable
with minimum additional computational time since the

function $’ in (17) appears only as a term of matrix [1?]

in (24).
The domain and the contour discretization schemes are

totally independent, This feature can offer the flexibility
to handle boundary discontinuities without the need
of excessive domain grid generations. This will be
illustrated through numerical examples in Section IV.

Once Vi is determined at the grid points, using Gaussian
elimination for instance, the potential at any other point,

is obtained using ordinary matrix multiplications as

shown by (17). No interpolations are needed.

III. EVALUATIONOF THE MATRIX ELEMENTS

To compute the function V from (17), one has to evaluate
the integrals of the matrix elements in (19) and (20), The
evaluation of the one-dimensional integral in (19) for the lj~

matrix elements has been discussed in [9]. Complex-function
theory was found useful to evaluate the integrals of (19) the

kernel of which is either a Green’s function or its gradient.

The Green’s function has integrable logarithmic singularities.
The integral of the gradient, t3cz/th, is discontinuous at AC’i,

equal to rr internal to C, and equal to –T external to C.

In this section the bji matrix elements will be evaluated.
From (2o) bji is determined once the integrals of a; and

~a; /h are both computed. The ~ai/6’n integral has no
logarithmic kernel and can be easily evaluated. The two-
dimensional integral of ai can be evaluated by using the results
of [9], as illustrated below. For simplicity we consider the
rectangular subregion A$Xi with coordinate system shown in

Fig. 1. We will use the notation ,z(z, y) = z + ~y to represent

a point in space. Referring to Fig. 1, the integral of (10) can
be written as

a=~l:+’d”’c+’++x’’25)
where

17--rq= J(3 - s’)’ + (Y - Y’)2 (26)

r and ~’ denote the radius vectors to the field and the source
points, respectively. Using the identities

ln(&)=Re(ln(+)’27)
and

dl’ = Idz’ I = dz’/u (28)

Fig. 1. Coordinate system for the evaluation of the matrix element integrals.

where u is the unit tangent to C. The integ,ral in (25) can now

be written as

where

lli has the same form as the matrix element integral evaluated
in [9], and it is equal to

‘li=Re(Ai(l+ln(z:i+l))
+“+:17W=9)) ‘3’)

where z%= ~(x,, Yi), ~i+l = ~(xi+l, Yil} Ai = Izi+l – ztl,
and

~i+l— zt _ X2+1 ‘- Xi
ul~ =

Irk+, -- XilAi – ‘-— “
(32)

By substituting (31) into (29) and integrating, we obtain the
following expression for ai

where

I“=rlRewT+J)dy’
which can be written as

(/
Z(a%+l, y.+l)

IM = R. ~
uz~ %(%+1, Y,)

l“(;~)d.j

where

,?$(~~+l, Yi+l) – ..(%i+l} Y’i)

“i= 12(X;+,, yt+,) - ‘@m”

(33)

(34)

(35)

(36)

Note that the integrals of (30) and (34> are similar except
for the limits of integration. Hence (31) can also be used to
compute 12,.

The integral 13~, which is defined as

‘3’=l:+lRe((z-z’)ln(=:z))dy’’37)



2582 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. 43,NO. 11,NOVEMBER1995

Subrs@onsfor whichem
(1O)hasSlngul.mlt!es.

m

$----- -- .–. c

I . ‘R’ ‘R’ \ /........ ..

\ ,,,,.,.............7

I!! ~ AR, j

\
.........\...,.,.,..`,...................................

@= f~(x)

a@/ax = -f.(y)
Ia.a.= f.(y)

Fig. 2. Geometry modeling of the contour C+.

can be expressed in terms of 12i using complex-function theory

as follows

/

Y%+l

13%=
Y. (X-xi’%: i+ll)dy’

/

Y%+l
—

Y. (’-”’’atan(~~f:l)dy’ “8)

Using (34), the above integral becomes

13. = ($ – xi)12i + 10, (39)

where

Ioi = ::’ua’an(.:i+l)du]‘=Y-y’/
(40)

loi can be evaluated analytically using integral tables. Finally,
the integral 14i in (33) is defined as

“=l:+’Re((z-zJ’n(&))dy’ “’)
Comparing (41) and (37), one can conclude that the integral
143 can be obtained from the integral lz~ by simply replacing
Z.+l by z; in (37). Now all quantities of (25) are evaluated
and can easily be programmed. However, as a word of caution,
logarithmic singularities can appear when evaluating (25) for

a subregion Ai?3~ if one of its edges coincide with a AC~
segment of the contour C, as shown in Fig. 2. Probably
the easiest technique to circumvent this type of singularity
predicaments is to first move the ACi segment locations to a
fictious parallel surface C+ just outside the bounding surface
c [12].

IV. NUMERICAL APPLICATIONS

Example 1) Water Propagation: General numerical tests
have been performed to show the validity of the present
method. As a first example, we consider the problem of water
propagation in a rectangular basin 100mx 100m [3]. Denoting
by Q the water evaluation, then the wave propagation is
governed by (1) with F = O, and A = k2 where k is the
wave number. The boundary conditions used are displayed
in Fig. 3. The solution by MoM is compared to the solutions
obtained by FPM and FEM for various mesh sizes inside the
domain. The minimum number of nodes required for each
method to converge to the exact solution at any arbitrary point
is optimized. Fig. 4 compares the solutions computed along

@= f~(x)

[

cos[ax) if 20< x <80

where fJx) = -2 if x<20

1 if x>80

f,(x) = sin(cty), fb = cos(ctx), and et = 2n

Fig. 3. Structure and boundary conditions of example 1.
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Fig. 4. MoM solutions for example 1.

the line z = 90 by the method of moments utilizing (1x 1),

(2x2) and (4x4) grids. Fig. 5 shows the solutions obtained

by the finite element method utilizing (5x5), (1OX 10), and

(20x 20) grids. Fig. 6 shows the results obtained by the finite

difference method utilizing (5x5), (15 x 15), and (35x35)

grids. In all these figures, the solid line represents the exact

solution. Referring to these figures, one can easily observe

that a considerably smaller number of nodes are employed

with the present method than with the conventional methods.

The minimum number of the domain nodes required to obtain
a satisfactory accuracy using MoM is 16 (4x4), compared to
400 (20x 20) for FEM or up to 1000 nodes for FDM.

Example 2—MOST Modeling: The nonlinear Poisson’s

equation plays a key role in numerical modeling of semi-

conductor devices. Many important characteristics of VLSI
devices can be extracted from the solution of Poisson’s

equation. The most common approach to the numerical

solution of the nonlinear Poisson’s equation is based on the

application of Newton’s method to simultaneous discretized

equations [15]. This approach often requires large storage,

especially for fine meshes as it is the case for two-dimensional

modeling of the MOST [14].
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Fig. 5. FEM solutions for example 1.
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Fig. 6. FDM solutions for example 1.
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Fig. 7. Structure and boundary conditions of example 2.

In this section the MoM is applied to solve the nonlinear
Poisson’s equation that arises in the MOST modeling. We con-

sider the MOST structure of Fig. 7 made on a p-type substrate

with doping ~A. Under the low current approximation the

potential @ is governed by the Poisson’s equation [16]

azfl IYv ni ( NA~–~_e~.———
8X2 + @2 = –Zg )

(42)
nz

where V = @/V~ is the normalized potential. VT is the
thermal potential, n; is the intrinsic carrier concentration, and

LD is the Debye length.
The boundary conditions adopted along the edges of the

device are the same as those used by [16], [12], and are
displayed in Fig. 7. On the oxide-semiconductor interface the
following boundary condition is assumed

where COO, and es are, respectively, the oxide and silicon

permittivities. V~B is the flat band voltage, and t.% is the

oxide thickness.

To solve the above elliptic problem we proceed first by
dividing the boundary into M segments. Finer segments are
used on the top edge of the device to handle its boundary dis-
continuities. Using the boundary conditions, and the technique
described in [9], matrix [Zj,] is computed, then inverted and

stored. Independently, the base domain is also divided into
N finite elements or cells. We seek to determine the electric

potential at each midpoint of the cells using (42) which is

nonlinear. To solve it we set up an iterative procedure, based

on Newton’s linearization [15]. At the I@ iteration we replace

the right-hand side of (42) by its Fourier expansion about V~.

Then the following Helmholtz’s equation k obtained

~zgj(k+l) + &@~+l)

8X2 ~y2
– G(@))@k+]) E F’(q(k)) (44)

where F and G are given by

qq(~)) = ; ((~(k)+ I)e-W(k) + (~(~) _ l)ew(kj ‘A
D ni )

(45)

(@k)) = ~
L% (e-w(k) + eq’(k)). (46)

The iteration scheme starts by taking some initial guess value
for V(o) so that (44) can be solved for the first approximation
V(l). Then U(l) is used to find the second approximation V(z).

The procedure is repeated until the norm llV(~+l) – V(k) II is

less than a desired tolerance. However, this iteration scheme
often diverges [13], [15], and some damping factor was found
necessary to improve the convergence of the iterative solution,
At the beginning of the Kth iteration step, the following
formula was used for all inner nodes

I@+l) = (1 – ~)@-Q + Ri@) (47)

where R( < 1) is the relaxation factor.

The accuracy of the solution obtained by the present tech-

nique is demonstrated by comparison to the FDM (5-point)

solution. For both methods, MoM and FDM, we let the values

of the electric potential to be updated at each mesh point

by means of explicit formula, that is, without the solution

of simultaneous algebraic equations [15]. We assign U = O,
as an initial guess, for all inner nodes. Once the convergence
is attained for the domain nodes, then the electric potential
at any other point in the device is determined by matrix
multiplication as shown in (17), and without the need of any
interpolation. For numerical computations, the relevant data
used are as follows: the oxide thickness, toz = 0.5 ~m. The
flat band voltage, V~B = – 1 V, the doping profile is assumed
uniform, NA = 1018 cm–3, n, = 1.5 x 1010 cm–3, thermal
potential, VT = 0.0258 V, and R = 0.1. The results of

the computations are shown in Fig. 8, w’here the distribution

of the electric potential at the thermal equilibrium is plotted

along different lines parallel to the x axis. The solid lines

represent the solution obtained using the FDM and (o) symbol

is reserved for the solutions obtained by the present method.
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Fig. 8. The distribution of electric potentials along the lines parallel to the
z-axis.

Close agreements can be observed between the two methods.
However, for FDM 721 nonuniform mesh points are employed

to reduce the total number of nodes (for uniform meshes over
4900 (70 x70) nodes ought to be used). Finer meshes were
chosen in the depletion region and near the junctions to resolve
the fast variation of the electric potential [16] and the surface
discontinuities. Whereas for MoM the number of the uniform
meshes was 529 (23 x23) or 400 for nonuniform cells. The

number of iterations required for the convergence was 51 with
the present technique compared to 108 iterations with FDM to
reach the point at which the absolute maximum between two
subsequent iterations was less than 0.05 (tolerance).

V. CONCLUSION

An efficient technique based on MoM formulation for solv-
ing a general Helmholtz equation has been presented. The main
feature of this new formulation is the boundary conditions

are satisfied independent of the region node discretizations.

This feature was found specially useful when the boundary

conditions have discontinuities. Considerable reduction in the
domain grids are realized with the present method compared

to the conventional methods such as finite difference method
or the finite element methods.
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